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Acid base variables predict survival early in the
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Abstract
Metabolic acid–base disorders, especially metabolic acidosis, are common in critically ill patients who require renal replacement
therapy. Continuous veno-venous hemodiafiltration (CVVHDF) achieves profound changes in acid–base status, but metabolic
acidosis can remain unchanged or even deteriorate in some patients. The objective of this study is to understand the changes of
acid–base variables in critically ill patients with septic associated acute kidney injury (SA-AKI) during CVVHDF and to determine how
they relate to clinical outcome.
Observational study of 200 subjects with SA-AKI treated with CVVHDF for at least 72hours. Arterial blood gases and electrolytes

and other relevant acid–base variables were analyzed using quantitative acid–base chemistry.
Survivors and nonsurvivors had similar demographic characteristics and acid–base variables on day one of CVVHDF. However,

during the next 48hours, the resolution of acidosis was significantly different between the 2 groups, with an area under the ROC curve
for standard base excess (SBE) and mortality of 0.62 (0.54–0.70), this was better than APACHE II score prediction power.
Quantitative physicochemical analysis revealed that the majority of the change in SBE was due to changes in Cl and Na
concentrations.
Survivors of SA-AKI treated with CVVHDF recover hyperchloremic metabolic acidosis more rapidly than nonsurvivors. Further

study is needed to determine if survival can be improved by measures to correct acidosis more rapidly.

Abbreviations: AG = anion gap, APACHE = Acute Physiology and Chronic Health Evaluation, CVVHDF = continuous veno-
venous hemodiafiltration, ROC = receiver operator characteristics, SA-AKI = sepsis associated acute kidney injury, SIDa, SIDe =
strong ion difference, SIG = strong ion gap.
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1. Introduction

Acid–base disorders especially metabolic acidosis are common in
patients with acute kidney injury (AKI) requiring renal replace-
ment therapy.[1–3] While continuous venovenous hemodiafiltra-
tion (CVVHDF) is effective in correcting acid–base imbalance,

some patients resolve metabolic acidosis more slowly than others
and some are refractory to treatment.[4–6] Emerging evidence
suggests that metabolic acidosis can produce a variety of effects
across a wide range of cellular process and is associated with
prolonged hospital, intensive care length stay and poor
prognosis. Some forms of metabolic acidosis appear to be
stronger predictors of mortality than others.[7–9] Thus, we sought
to determine whether the type of metabolic acidosis and/or the
rate of resolution predict hospital mortality in a cohort of
critically ill patients with sepsis associated acute kidney injury,
treated with CVVHDF.

2. Methods

2.1. Patients and data collection

This study was approved by the Investigational Review Board of
the Hospital Israelita Albert Einstein. This retrospective study
included patients admitted to a 45-bed medical-surgical depart-
ment of intensive care during a 4.5-year period (January 1, 2002–
July, 2006) who developed SA-AKI requiring renal replacement
therapy for at least 72hours. The indications for renal
replacement therapy included refractory acidosis, refractory
hyperkalemia, hemorrhage due to azotemia, uremic encephalop-
athy, uremic pericardial effusion, and hypervolemia. The data
needed for analysis of the ICU patients were originally collected
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by the ICU staff as part of standard patient care, and are
electronically stored and available for computer-based retrieval.
We thus obtained demographic data (age, sex, APACHE II score,
ICU mortality, 28 days mortality, and admission diagnosis) and
biochemical data from our electronic ICU database. The
biochemical data used were from the first and third day of
CVVHDF.

2.2. Renal replacement therapy and anticoagulation

Vascular access was obtained via a 12-F double-lumen catheter
(Arrow-Howes multiple-lumen hemodialysis catheter, Arrow
International, Reading, PA) introduced into the jugular,
subclavian, or femoral vein. Hemodiafiltration was performed
using a M100 dialyser (Gambro, Lakewood, CO) on a Prisma
machine with blood flow rate (QB) = 100mL/min; dialysate flow
rate (QD) = 2500mL/h; and fluid reposition = 500mL/h. The
replacement fluid for hemofiltration consisted of 120mmol/L Na,
120mmol/L Cl, and 0.5mmol/L Mg. The composition of the
dialysate used during HDF was bicarbonate individualized 36 to
40mmol/L, 140mmol/L sodium, 2mmol/L potassium, and 108
mmol/L chloride Trisodium citrate was administered at a starting
rate of 4.3mmol/L of extracorporeal blood flow. Citrate infusion
rate was then adjusted to maintain the serum ionized calcium
concentration < 0.3mmol/L in the circuit. The CaCl2 replace-
ment solution (1g/10mL) was administered via a central line at
an initial rate adjusted to the citrate rate. The CaCl2 infusion rate
was then adjusted to maintain the patient ionized Ca concentra-
tion in the normal range (1.05–1.15mmol/L).

2.3. Calculations

From these data, base deficit, anion gap (AG), apparent and
effective Strong Ion Difference (SIDa, SIDe), and strong ion gap
(SIG) were calculated as described previously.[6] In brief,

AG ¼ ðNaþ KÞ � ðClþHCO3Þ ð1Þ

SIDa ¼ ðNaþ Kþ CaþMgÞ � ðCl� LactateÞ ð2Þ

SIDe ¼ 2:46⋅10�8⋅PCO2=10�pH þ ½albumin�⋅ð0:123⋅pH
� 0:631Þ þ ½PO2

4�⋅ð0:39⋅pH� 0:469Þ ð3Þ

SIG ¼ SIDa� SIDe ð4Þ

2.4. Statistical analysis

Patients were divided into 2 groups: survivors and nonsurvivors.
The temporal evolution (Day 3–Day 1) of acid–base variables
was analyzed in the 2 groups. In-hospital survivorship was
assessed for up to 28 days after the start of CVVHDF. All
statistical analyses were performed using a statistical software
package (SPSS 10.0.5; SPSS Inc, Chicago, IL). Values are given as
mean ± SD or median with interquartile range (IQR). Normal
distribution of continuous variables was verified (Klomogorov–
Smirnov test). Difference testing between groups was performed
using the 2-tailed t test, x2 test and Fisher exact test, Mann–

Whitney U test as appropriated.[10] Finally, receiver operator
characteristics (ROC) curves were constructed to analyze each
variable’s discriminating power for predicting mortality and the
areas under each curve were compared.

3. Results

Over the period analyzed, 200 subjects qualified for inclusion.
We analyzed data from 245 subjects, 45 were excluded; 23
subjects did not have all the laboratory data required for acid–
base quantitative analysis and in 22 the CVVHDF last<72hours.
Demographic and acid base variables are shown in Table 1. In

the first day of CVVHDF, subjects exhibited moderate acidemia
(pH=7.31±0.11), and this was primarily due to hyperchlor-
emia. There was no difference in the main demographic and acid
base variables between those who died and those who survived to
hospital discharge, except for a small increase in serum lactate
levels in the nonsurvivor group (Table 1).
However, by day 3 of CVVHDF there was a significant

difference between the 2 groups (survivors and nonsurvivors)
with respect to acid–base status (Table 2). Indeed, by the end of
72hours the nonsurvivor group still exhibited metabolic acidosis
(standard base excess (SBE): �2.7+/� 4.0) while metabolic
acidosis had resolved in the survivor group (SBE: �0.4+/� 4.2)
(Fig. 1). ROC curves for SBE proportional variation, lactate and
SBE at day 3 were significant (P< .05) and are shown in Table 3.
The main determinants of the change in acid–base variables

over days 1–3 between survivors and nonsurvivors are shown in
Table 2. Applying quantitative approach it was possible to
determine which were the determinants of SBE evolution and
consequently, which were the components responsible for the
different patterns observed. Both survivors and nonsurvivors had
similar resolution of SIG (�2.2 vs �2.0; P= .643) and neither
exhibited much change in lactate (�0.1 vs 0.2; P= .127). By
contrast chloride and sodium levels were the main determinants
of the difference in SBE evolution between groups, accounting for
44% and 31% of this difference. However, neither of these

Table 1

Demographic and acid–base characteristics in the first day of
CVVHDF.

Variable Survivors Nonsurvivors P value

APACHE II score 29.1 27.4 .17
AGE 62.9 (17.7) 64.7 (15.6) .44
pH 7.24 (0.71) 7.31 (0.12) .32
pCO2 39.6 (10.2) 39.8 (12.6) .89
SBE �5.9 (5.2) �5.9 (4.2) .94
Albumine 2.5 (0.6) 2.5 (0.6) .98
Phosp 4.2 (1.5) 4.3 (1.7) .69
SIDa 35.5 (5.7) 35.9 (5.8) .60
SIDa inorg 33.6 (6.0) 33.6 (6.2) .98
Na 139.8 (4.9) 140.9 (4.4) .11
K 4.0 (0.6) 4.1 (0.6) .83
Ca 1.0 (0.1) 1.06 (0.1) .53
Mg 0.4 (0.1) 0.4 (0.1) .32
Cl 109.3 (6.3) 109.1 (5.3) .80
Lactate 1.8 (1.0) 2.2 (1.4) .02
SIG 6.5 (4.4) 7.2 (4.1) .23

Variables were collected at the beginning of CVVHDF.
APACHE II=Acute Physiology and Chronic Health Evaluation, Cl= chlorate, CVVHDF=continuous
venovenous hemodiafiltration, Na= sodium, pCO2=partial carbon dioxide tension of arterial blood,
Phosp=phosphate, SBE= standard base excess, SIDa inorg=SIDa-lactate, SIDa= apparent strong
ion difference, SIG= strong ion gap.
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reached statistic significance when considered alone (P= .267 and
P= .174, respectively). However, the change in SIDa was
significantly different between survivors and nonsurvivors
(+2.5 vs +0.5; P= .01) (Table 4).

4. Discussion

Continuous renal replacement therapies, particularly CVVHDF,
have been increasingly used in the treatment of critically ill
patients with AKI. One important goal of renal replacement
therapy is to correct acid–base disturbances, especially to avoid
the possible detrimental effects of acidemia.[1,2] However this
effect is not achieved in all patients uniformly.[4] In our study,
nonsurvivors remained significantly acidotic after 72hours of
renal replacement therapy. By contrast survivors resolved their
acidosis, mainly due to a change in SIDa, specifically caused by
changes in chloride and sodium. These results are in accordance
with other studies using different renal replacement therapies and
different populations.[11,12]

However, the mechanisms behind these changes in acidosis
over time are unclear. It does not appear that renal replacement
therapy itself is responsible for the persisting hyperchloremic
acidosis since all patients received renal replacement with the
same composition of solutions and the doses of hemodiafiltration
were similar in both groups. Furthermore, since the sieving
coefficient of chloride is >1, chloride can be easily removed with
renal replacement therapy.[13]

Hypercloremic acidosis in critically ill patients is multifactorial,
but due in part to hyperchloremic resuscitation fluids like 0.9%
“normal” saline (NS).[14–17] Also endogenous hyperchloremia,
attributable to Cl-shifts from extravascular to vascular spaces
may also be seen, particularly in patients with sepsis.[18,19] In our
cohort, nonsurvivors had a significantly higher level of lactate, so
more NS fluid administration might have been used to reverse
presumed septic shock and lactic acidosis at the expense of
hyperchloremia. We are unable to test this hypothesis within the
restrictions of our database.
The finding that hyperchloremic acidosis was associated with

worse outcome is also notable because this form of acidosis is not
clearly as hazardous from a clinical perspective[20] although
animal studies have shown deleterious effect of hyperchloremia in

Table 2

Acid–base characteristics in the third day of CVVHDF.

Variable Survivors Nonsurvivors P value

pH 7.39 (0.09) 7.35 (0.12) .01
pCO2 41.1 (9.1) 41.9 (13.4) .62
SBE �0.4 (4.2) �2.7 (4.0) <.01
Albumine 2.5 (0.6) 2.5 (0.6) .91
Phosp 3.5 (1.4) 3.5 (1.3) .92
SIDa 37.9 (5.3) 36.8 (4.1) .09
SIDa inorg 36.2 (5.3) 34.3 (5.4) ,01
Na 140.6 (4.2) 140.8 (3.3) .62
K 3.9 (0.4) 3.9 (0.4) .91
Ca 1.15 (0.07) 1.16 (0.08) .72
Mg 0.43 (0.05) 0.43 (0.05) .94
Cl 107.6 (4.2) 108.3 (3.8) .21
Lactate 1.7 (1.0) 2.4 (2.2) <.01
SIG 4.2 (3.4) 5.2 (3.2) .04

APACHE II=Acute Physiology and Chronic Health Evaluation, Cl= chlorate, CVVHDF= continuous
venovenous hemodiafiltration, Na= sodium, pCO2=partial carbon dioxide tension of arterial blood,
Phosp=phosphate, SBE= standard base excess, SIDa inorg=SIDa-lactate, SIDa= apparent strong
ion difference, SIG= strong ion gap.
Variables were collected 72hours after the beginning of CVVHDF.

Figure 1. Temporal standard base excess evolution between survivors (white) and nonsurvivors.

Table 3

Summary of the ROC curves.

Parameter AUROC P

APACHE II 0.44 (0.36–0.52) .189
SBE day 1 0.66 (0.58–0.73) <.001
SIDa day 1 0.54 (0.46–0.62) .313
Lactate day 1 0.66 (0.57–0.73) <.001
SIG day 1 0.55 (0.47–0.63) .240
SBE variation 0.62 (0.54–0.70) .003
SIDa variation 0.62 (0.54–0.69) .004
Lactate variation 0.56 (0.48–0.64) .110
SIG variation 0.54 (0.46–0.62) .261
SBE day 3 0.66 (0.58–0.73) <.001
SIDa day 3 0.54 (0.45–0.61) .386
Lactate day 3 0.66 (0.58–0.73) <.001
SIG day 3 0.57 (0.49–0.65) .062

APACHE II=Acute Physiology and Chronic Health Evaluation, AUROC= area under ROC curve, ROC=
receiver operator characteristics, SBE= standard base excess, SIDa= apparent strong ion difference,
SIG= strong ion gap.
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experimental sepsis[21,22] and in agreement of this recent studies
in human reported similar findings.[18,23–25]

We found the SBE and lactate variation resulted in similar
mortality prediction capability with area under ROC curve
(AUROC) under the conventional threshold of 0.7 that is
typically considered satisfactory for clinical use. These findings
were consistent with the BEST Kidney study that tested the
discrimination and calibration of several AKI scoring systems in a
broad cohort of patients from multiple countries. In that study
the lactate level achieve an AUROC of 0.639, which was similar
to the more complex scoring systems.[26] However, we consider
that inadequate temporal evolution of SBE and lactate during
CVVHDF should prompt the clinician to initiate both diagnostic
and therapeutic actions. Page et al[5] have shown in a
retrospective study in a population of refractory septic shock
that lack of metabolic improvement after 12hours of CVVHDF,
that was defined as unchanged base deficit despite the buffering
action of CVVHDF, was associated with a 100% mortality rate.
Furthermore, Passos et al[27] have found an association between
lactate clearance and lactate at 24hours withmortality in patients
with septic AKI undergoing CVVHDF. However, unlike in our
study, the most important component of acidosis in theirs
population was lactate.
SIG has recently been shown to predict outcome in various

populations, particularly when measured early in the course of
illness.[28–31] One possible explanation for the poor discrimina-
tive ability of the SIG in this study is that correction of acidemia
over CVVHDF is associated with a decreased SIG, in our study
the temporal decrease of SIG was in parallel between survivors
and non survivors. Rocktäschel and coworkers[32] studied the
effect of CVVH on acid–base balance. CVVH appears to correct
metabolic acidosis in AKI through its effects on unmeasured
anions, phosphate, and chloride. Passos et al[33] did a similar
study during CVVHDF with regional citrate anticoagulation and
have found similar results. In both studies hypoalbuminemia had
an alkalinizing effect.[32,33]

Our study has several limitations. First, as a retrospective
study, our database is limited to the variables that were collected
for clinical management. However, our inclusion criteria were
predefined and data were retrieved from an independent
computerized database. We only analyzed the first and third
day of CVVHDF. Acute Physiology and Chronic Health
Evaluation (APACHE) were recorded only on admission to
ICU. We did not have data about differences in residual diuresis
and the saline volume of resuscitation in the 2 groups.

5. Conclusion

The use of quantitative acid–base chemistry can discriminate the
components of acidosis in patients with acute renal failure during
CVVHDF. Survivors recover hyperchloremic metabolic acidosis
more rapidly than nonsurvivors. Temporal evolution of SBE and
lactate can still be used as monitoring tools in the population of
ARF patients during CVVHDF. Further studies are needed to
determine if survival can be improved by therapeutic measures
aimed to correcting acidosis.
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